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DOUBLE-FLUID STEADY FILTRATION FLOWS

IN NEAR-SHORE WATER-BEARING STRATA

UDC 517.958.532V. N. Monakhov

Two-dimensional stationary problems of filtration of a fluid having unknown contact (free) boundaries
with fixed fluids of different density (water–air and salt and fresh waters) are studied. The paper
considers various applied problems of this type, which are encountered, for example, in description
of filtration in a water-bearing stratum of fresh water bordering on marine or salt ground waters:
the problems of a fresh-water lens, a bottom-water cone near an imperfect well, equilibrium of two
interfaces reaching drainage, etc. Unique solvability is proved for a wide class of contact problems of
filtration of fluids of various density in porous channels with known parts of boundaries in the form
of finite or infinite polygons.

Studies of filtration problems in a primal formulation relative to the parameters included in them (physical
and geometric) reveal new qualitative properties of the solutions of these problems.

An algorithmic method for proving the solvability of the functional equations for such parameters of filtration
flows with free (unknown) boundaries was first proposed in [1] and developed in [2–5].

1. Formulation of Contact Problems of Filtration Theory. The filtration equations are written as
[6, p. 47]

v = k∇ϕ, div v = 0, −ϕ = p/(ρg) + x. (1)

Here v = (u, v) is the filtration velocity vector, (|v| is the flow rate), −ϕ is the hydraulic head (ϕ is the filtration
potential), p and ρ are the fluid pressure and density, respectively, the gravitational vector g = (−g, 0) is in
opposition to the Ox axis, which is perpendicular to the main fluid flow, and k = const > 0 is the filtration factor.
The flow continuity equation div v = 0 in (1) allows one to introduce the stream function ψ(x, y): kψy = u and
−kψx = v. Thus, two-dimensional steady filtration flows in homogeneous (k = const) porous media are described
by the analytical function w(z) = ϕ+ iψ, which is the complex filtration potential (z = x+ iy).

We consider the region D = D(ρ1) of the fluid filtration flow of density ρ = ρ1 bounded by a specified finite
or infinite polygon P and unknown curves of the free boundary L (water–air interface) and the interface Γ between
fresh and salt waters. In turn, the polygon P includes regions P k bordering on the fixed fluid of the same density
ρ = ρ1 with the condition ϕ = const specified on them, impermeable regions P j (confining beds), characterized
by the condition ψ = const, and, in some problems, vertical lines of flow symmetry P s: y = const, on which the
condition v = 0 [v = (u, v)] is specified.

For z ∈ P s, we have v = −kψx = 0, whence ψx = 0, and thus, P s is a streamline ψ = const.
The free boundary L is a streamline ψ = const with constant pressure on it (p = const), which leads to

satisfaction of the condition ϕ + x = const. The interface Γ between fresh and salt waters is also a streamline
ψ = const, on which the pressures pk = −gρk(ϕk + x) (k = 1, 2) are identical, and this leads to the relation

ϕ− λx = (ρ2/ρ1)ϕ2 = const, λ = ρ2/ρ1 − 1 > 0, z ∈ Γ. (2)
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In the plane of the complex potential w = ϕ+ iψ, the boundary conditions for w(z) on ∂D = P ∪L∪Γ define
the boundary of the region D∗, which consists of line segments ϕ = const and ψ = const. In this case, depending
on flow diagram, the inside angles γkπ at the vertices wk of the polygon ∂D∗ take one of the values: γkπ = π/2,
3π/2, or 2π at the finite vertices and γkπ = 0 or −π at the infinite vertices wk.

2. Representation of Conformal Mappings. Problem of Parameters. We construct conformal
mappings w: E → D∗ and z: E → D of the upper half-plane E: Im ζ > 0 in the regions D∗ and D. We assume
that zk ∈ P (k = 0, n+ 1) are the vertices of the polygon P , tk (t0 < t1 < . . . < tn+1) are the preimages of the
vertices on the material axis ∂E [zk = z(tk)], αkπ are the inside angles at these vertices, and lk = |zk − zk−1| are

the lengths of the finite links Pk ⊂ P with the ends at the points zk and zk−1

(
P =

n+1⋃
k=1

Pk

)
.

From the condition ϕ+x = const on the free boundary L, we obtain dx/dt = −dϕ/dt = |dw/dt|. Similarly,
from relations (2) on Γ, we have dx/dt = λ−1|dw/dt|. In the problems studied below, the free boundary L is present
only together with the interface Γ, and L and Γ reach horizontal drainage P j : x = const, and on it, dx/dt = 0.

Thus, for t∈̄(t0, tn+1), i.e., on the preimage of the interface S = L ∪ Γ ∪ P j , the function dx/dt is known.
Then, to determine the derivative dz/dζ, we have the boundary-value problem

arg
dz

dt
= δkπ, t ∈ [tk−1, tk];

dx

dt
= q(t)

∣∣∣dw
dt

∣∣∣, t∈̄(t0, tn+1). (3)

Here δkπ is the angle between the link Pk ⊂ P and the Ox axis, q(t) = 1 for t ∈ L∗, q(t) = λ−1 for t ∈ Γ∗, and
q(t) = 0 for t ∈ P j∗ ; L∗, Γ∗, and P j∗ are the preimages of L, Γ and P j , respectively [L = z(L∗), . . .].

The canonical solution of the homogeneous problem (3) in the desired class of analytical functions is the
derivative

dZ

dζ
= C

n+1∏
k=0

(ζ − tk)αk−1 ≡ CΠ(ζ) (C = const) (4)

of the conformal mapping Z: E → D(P̄ ) of the upper half-plane E onto the region D(P̄ ), bounded by the polygon

P̄ = P ∪P0 ∪Pn+2 =
n+2⋃
k=0

Pk, where P0 and Pn+2 are infinite rays with the ends at the points z0 and zn+1. Writing

the solution of the nonhomogeneous problem (3) in a standard manner via the solution of the homogeneous problem
(4), we arrive at the following representations for the derivatives dw/dζ and dz/dζ:

dw

dζ
= Keiβπ

∏
k

(ζ − τk)γk−1 ≡ Π0(ζ),
dz

dζ
= Π(ζ)M(ζ),

(5)

Π(ζ) =
n+1∏
k=0

(ζ − tk)αk−1, M(ζ) =
1
πi

∫
S∗

q(t)|Π0(t)|
Π(t)(t− ζ)

dt (S = z(S∗)).

Here τk are preimages of the vertices wk of the polygon ∂D∗, which coincide with some of the parameters tj .
Every vector T = (t1, . . . , tn) (K = 1, t0 = −1, and tn+1 = 1 are fixed) substituted into (5) corresponds

to a certain polygon P (T ) with links Pk(T ) parallel to Pk ⊂ P . The required constants tk (k = 1, n) should
be determined such that P (T ) coincides with the specified polygon P . We write the system of equations for tk
for the general case of the filtration region D, where on P there are two infinite vertices zs = ∞ and zm = ∞
(0 6 s < m 6 n+ 1) upstream and downstream, respectively.

On each of the infinite links Pk and Pk+1 (k = s,m) adjoining to the vertices zs = zm = ∞, we fix two
different points and include them in the number of vertices P with vertex angles equal to π.

The required constants tk (k = 1, n) are obtained from the system

lk =

tk∫
tk−1

|Π(t)M(t)| dt, k = 1, n+ 1, k 6= s, s+ 1, m, m+ 1,

(6)

ls + ils+1 =

ts+1∫
t0

dz

dζ
dζ, lm = Im

tm+1∫
t0

dz

dζ
dζ.
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Fig. 1. Diagrams of near-shore flows (FS is the free surface): (a) free-flow horizon; (b) pressure horizon; (c) ocean
island; (d) Dutch type.

Here lk = |zk − zk−1| are the specified lengths of the finite links Pk ⊂ P , ls + ils+1 = zs+1, lm = Im zm+1, and
z0 = z(t0) = 0.

Any two of the last three equations of (6) can be replaced by relations for specified finite flow depths Hs

and Hm in the neighborhood of zs and zm:

Hk = π
∣∣∣dz
dζ

(ζ − tk)
∣∣∣
ζ=tk

, k = s,m.

Contact filtration problems are studied by the continuity method, which involves transition from primal
problems, for which unique solvability of system (6) for parameters is known, to more complex problems by defor-
mation of the polygonal boundaries of the region D [1, 2]. We consider a number of such initial problems, which
are, in addition, of independent interest. Figure 1 [7, p. 287] shows interfaces of various shapes in near-shore
water-bearing strata. When the interface intersects a confining bed, the region of salt water takes the shape of a
wedge (Fig. 1a and b). Figure 1c and d shows a fresh-water lens floating on salt water.

3. Interface between fresh and salt waters under a dam. Figure 2a shows a diagram of fluid filtration
in the region D = D(ρ1) under a narrow dam simulated by the line segment Ox in the presence of a fixed underlying
bed D(ρ2) (ρ2 > ρ1) of salt groundwater [6, p. 333].

It is assumed that in the permeable regions y > 0, y < 0 of ∂D, the heads ϕ = H/2 and ϕ = −H/2,
respectively, are specified [ϕ ≡ ϕ1 in D = D(ρ1)], and the unknown interface Γ = D(ρ1) ∩D(ρ2) between the fresh
and salt fluids is a streamline ψ = 0. The equality of pressures pk = −gρk(ϕk+x) (k = 1, 2) on Γ leads to boundary
condition (2).

For the derivatives of the conformal mappings w: E → D∗ and z: E → D, analogs of representations (5)
hold:

dw

dζ
=
H

π
(1− ζ2)−1/2,

dz

dζ
= λ0Π(ζ)[M(ζ) + iC],

(7)

Π(ζ) = (1− ζ2)−1, M(ζ) =
1
πi

1∫
−1

(1− t2)1/2

t− ζ
dt, λ0 =

H

πλ
.
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Fig. 2. Flow diagrams under a narrow dam (a) and in a water-bearing stratum (b).

The required material constant C should be determined from the equation for the specified depth H0 in the
lower pool z0 =∞: ∣∣∣dz

dζ
(ζ + 1)

∣∣∣
ζ=−1

=
H0

π
.

We note that at C = 0, the derivative dz/dζ in (7) has order of ζ−3 in the neighborhood of the point ζ =∞,
and thus, the conformality of the mapping z: E → D is broken at this point.

The Cauchy-type integral M(ζ) in (7) satisfies the conditions Re M(t) = (1−t2)1/2 (|t| 6 1) and Re M(t) = 0
(|t| > 1), to which, apparently, the function M0(ζ) = (1− ζ2)1/2− i(1 + ζ2)1/2 also obeys. At ζ →∞, the orders of
functions M(ζ) and M0(ζ) coincide, and, hence, M(ζ) = M0(ζ). Substituting the value of M(ζ) into (7), we obtain

dz

dζ
= iλ0(1− ζ2)−1[N(ζ) + C], N = − 2√

ζ2 − 1 +
√
ζ2 + 1

. (8)

Conservation of the orientation of the conformal mapping z: E → D and its nondegeneracy (dz/dt 6= 0, where
|t| < ∞) lead to the condition N(t) + C < 0, |t| > 1, which is satisfied only for C < −1. With allowance for this,
the constant C = −(2λH/H1 + 1) is uniquely determined from the equation for H0.

Remark 1. With the above normalization of the mapping z: E → D, which is used in [6], the function
Π(ζ) has a second order ζ−2 as ζ →∞, which leads to a change of representation (5) for dz/dζ. Let now t1 = −1
and t0 = 1, and, thus, Γ is the preimage of Γ∗: |t| > 1. In this case, the representation dw/dζ = (H/π)(1− ζ2)−1/2

remains unchanged, and Π(ζ) and M(ζ) are written in the form of (5):

Π(ζ) = (ζ − 1)−1, M(ζ) =
λ0

πi

∫
|t|>1

( t− 1
t+ 1

)1/2 dt

t− ζ
.

4. Interface in a Near-Shore Pressure Water-Bearing Stratum. A diagram of filtration is shown in
Fig. 2b [7]. In the region D = D(ρ1) there is filtration of fresh water of density ρ1, and the region D(ρ2) is occupied
by fixed salt (marine) water of density ρ2 > ρ1. The rays

P k = {z | Re (z − zk) = 0, Im (z − zk) > 0}, k = 1, 3 (P 1 ≡ P 0)

are confining beds, i.e., streamlines ψ = ψk = const (ψ0 = 0 and ψ3 = Q). On the unknown interface Γ, as
in the problem considered in Sec. 3, the conditions ψ = 0, ϕ = λx + ϕ∗, and λ = ρ2/ρ1 − 1 are satisfied The
region P 2 = {z | x = 0, y2 < y < 0} of the seabed is an equipotential line ϕ = 0. From the conditions ϕ = 0 and

ϕ = λx+ϕ∗, at the point z2 = P 2∩Γ we obtain ϕ∗ = 0. Then, at the point z1 ∈ Γ, we have w1 = ϕ1 = λx1 = −λH.
The derivatives of the conformal mappings w: E → D∗ and z: E → D are represented in the form of (5),

where Π0(ζ) = K(ζ−t0)−1[(ζ−t2)(ζ−t3)]−1/2 (K > 0), Π(ζ) = (ζ−t0)−1, and S∗ = Γ∗ [Γ = z(Γ∗)]. The constants
t1, t2, and K = 1 are fixed, and the required parameters t0 and t3 are determined from the equations

λH =
∫
Γ∗

|Π0(t)| dt, l = |z3 − z2| =
t3∫
t2

|Π(t)| |M(t)| dt,

in which H and l are specified.
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Having found t0 and t3, we calculate the flow rate Q: Q = π|Π0(ζ)(ζ − t0)l|ζ=t0 .
If the constant t3 is also fixed, the constant t0 can be found from the condition

Hλ =
∫
Γ∗

|Π0(t)| dt ≡ Φ(t0)

( ∫
Γ∗

=

∞∫
t1

+

t2∫
−∞

)
. (9)

In this case, the length l = |z3 − z2| is not specified beforehand but is determined together with the flow rate Q
after finding t0. Let, for definiteness t2 = −1, t3 = 0, and t1 = 1.

By the substitution of variables t = −τ in the integral over the ray −∞ < t < t2 = −1, the function Φ(t0)
in (9) becomes

Φ(t0) =

∞∫
1

1√
t

( 1
(t− t0)

√
t+ 1

− 1
(t+ t0)

√
t− 1

)
dt ≡

∞∫
1

σ(t0, t) dt.

For t0 ∈ [0, 1], ∂σ/∂t0 > 0 and σ(0, t) < 0; σ(t0, t) → +∞ as t0 → 1. Hence, there is a unique value of t0 ∈ (0, 1)
for which relation (9) is satisfied.

5. Finite Water-Bearing Stratum. We consider the filtration diagram shown in Fig. 2b (z∗0 = z0,
z∗4 = z4, and P 4

∗ = P 4), where the water-bearing stratum, in contrast to the case studied in Sec. 4, has finite
dimensions [8, p. 285].

On the feed contour P 4 = {z | −H < x < 0, y = y0} — the boundary between fixed and moving fresh
waters — we set ϕ|P 4 = ϕ0 = 0 (ϕk = Rewk, where k = 0, 4).

On the line P 2 = {z | x = 0, y2 < y < 0} of fresh water outflow — a horizontal filtration gap — we have
ϕ|P 2 = ϕ2 = H2 − H̄1, where H̄1 = H1ρ2/ρ1 is the potential of fresh water with respect to salt water, and, with
allowance for the displacement scheme, H2 > H̄1.

The confining beds P 0 and P 3 are streamlines ψ = 0 and ψ = Q. The unknown interface Γ between fresh and
salt waters is characterized by the conditions ψ = 0 and ϕ = λx+ϕ2, whence it is necessary that ϕ1 = ϕ2−λH > 0.

Representations (5) for dw/dζ and dz/dζ become

dw

dζ
= iK

∏
k 6=1

(ζ − tk)−1/2 ≡ Π0(ζ), K > 0,
dz

dζ
= Π(ζ)M(ζ),

(10)

M(ζ) =
1
πi

∫
S∗

q(t)|Π0(t)|
Π(t)(t− ζ)

dt,

where S∗ = Γ∗ [Γ = z(Γ∗], Π(ζ) = [(ζ − t0)(ζ − t4)]−1/2, and q = λ−1. We fix the constants t0 = 0 and tk = k − 1
(k = 2, 3, 4), and obtain the unknowns parameters K and t1 from the system

ϕk =

tk∫
t0

|Π0(t)| dt (k = 1, 2), (11)

where ϕ1 and ϕ2 were calculated above.
In the integral for ϕ1, we make the change of variables t = st1 and write it as

K−1ϕ1 = t
1/2
1

1∫
0

s−1/2
4∏
k=2

(tk − st1)−1/2 ds ≡ ϕ(t1),

and from the second equation in (11), we calculate K = [ϕ(1)]−1ϕ2. Considering the ratio ϕ1/ϕ2 = ϕ(t1)/ϕ(1) ≡
Φ(t1), we note that dΦ/dt1 > 0 [t1 ∈ (0, 1)], Φ(0) = 0, and Φ(1) =∞. Hence, for all ϕ1 and ϕ2 (0 < ϕ1 < ϕ2) there
is a unique value of t1 ∈ (0, 1) for which the equality ϕ1 = ϕ2Φ(t1) is satisfied.

Thus, we established that system (11) is uniquely solvable for K and t1.
The flow rate Q = |w4−w0| and the coordinates of all points zk ∈ ∂D (k = 0, 4) are determined from known

values of tk (k = 0, 4) and K.
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Fig. 3. Diagrams of filtration: (a) bottom-water cone; (b) fresh-water lens.

6. Bottom-Water Cone. Figure 3a shows a diagram of fresh water inflow into an imperfect well located
symmetrically in a water-bearing stratum with underlying salt ground water [7; 9, p. 202].

On the feed contour P 4 = {z | y = 0, 0 < x < H}, we set ϕ
∣∣∣
P 4

= 0. The confining bed P 3 = {z | x =

H, −l < y < 0} is considered impermeable (ψ
∣∣∣
P 3

= Q). At the well P 2 = {z | x2 < x < H, y = −l} located on the
symmetry axis y = −l the following condition is specified:

ϕ
∣∣∣
P 2

= ϕ2 > ϕ1 = λx1 (ϕk = Rewk, k = 0, 4).

In the unperforated region P 1 = {z | x1 < x < x2, y = −l} of the symmetry axis, the projection v of the
filtration velocity vector v = (u, v) is equal to zero (v = 0), and, thus, ψ = const. The unknown interface Γ between
moving fresh water and fixed salt water is a streamline ψ

∣∣∣
Γ

= 0, and on it the condition pressure equilibrium

ϕ
∣∣∣
Γ

= λx is additionally satisfied. In this case, ψ = 0 over the entire line (P 1 ∪ Γ). The derivatives dz/dζ and

dw/dζ are written in the form of (10), where

S∗ = Γ∗ (Γ = z(Γ∗)), Π =
∏
k

(ζ − tk)−1/2(t1 − ζ)1/2 (k = 0, 3, 4), q = λ−1.

As in Sec. 5, the constants t0, t2, t3, and t4 are fixed, and the unknowns constants K and, t1 are obtained
from the uniquely solvable system (11).

Remark 2. Figure 3a shows a more general diagram of filtration of fresh and salt waters near an imperfect
well, which is studied similarly to the diagram considered above (z∗4 = z4, z∗5 = z5, and P 4

∗ = P 4).
7. Fresh-Water Lens. 7.1. Symmetric Flow. It is assumed that the interface between fresh and salt

waters and the excess flow of fresh water directed toward the sea is in equilibrium, which leads to formation of a
stable fresh-water lens floating on salt water [6, p. 334–338; 7]. The surface of the fresh-water flow to the sea is
simulated by horizontal drainage. Half of this symmetric fresh-water flow in a near-shore water-bearing stratum
is shown in Fig. 3b. Here L is the free boundary (water–air interface) on which the conditions ψ = Q (Q is the
required fresh water flow rate) and ϕ + x = 0 are satisfied, and Γ is the interface between fresh and salt waters
characterized by the conditions ψ = 0 and ϕ = λx+ ϕ∗ (ϕ∗ = const).

On the infiltration surface or at the bottom of the freshwater basin of small depth simulated by the segment
P 4 = {z | x = 0, y4 < y < 0}, we set ϕ = 0 and on the line P 2 = {z | x = −H0, y2 < y < y3} of fresh-water flow,
ϕ = H0 (x = −H0 is the sea level). The line of symmetry P 0 = {z | −H0 −H1 < x < 0, y = 0} is a streamline
ψ = 0.

At the point z2 = Γ ∩ P 2, H0 = −λH0 + ϕ∗, whence ϕ∗ = (1 + λ)H0. Then, at the point z1 = Γ ∩ P 0,
we have ϕ1 = H0 − λH1 and ϕ0 = 0 < ϕ1 < H0 = ϕ2 (ϕk = Rewk). The last inequalities lead to the condition
H1/H0 < λ−1, which ensures motion of the fresh water toward the sea.

The derivatives dw/dζ and dz/dζ are written in the form of (10), where Π = [(ζ − t0)(ζ − t1)]−1/2. The
constants t0, t2, t3, and t4 are fixed, and K and t1 are uniquely determined from system (11) (see Sec. 5).

A more general version of symmetric flow is shown schematically in Fig. 3b, were z4 = 0, z∗5 = z5, z∗0 = z0,
P 5
∗ = P 5, and P 0 = {z | x = −H, y1 < y < y0} (H = H0 +H1).
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The segment P 5 = {z | −H < x < 0, y = y5 > 0} is a line of symmetry, and, thus, ψ = 0 on P 0 ∪ P 5. On
the feed line, P 4 = {z | x = 0, 0 < y < y5}, we set ϕ = 0. In representation (10), we have

dw

dζ
= Π0(ζ) = Keiβπ

5∏
k=2

(ζ − tk)−1/2, Π(ζ) = [(ζ − t0)(ζ − t5)]−1/2.

As in the previous case, the constants tk, k = 2, 5 (−∞ < t5 < t0 < t1 < . . . < t4 < ∞) are specified, and the
parameters K and t1 are uniquely determined from system (11), in which the integrals are calculated in the interval
(t5, tk), k = 1, 2, and, therefore, the unknown parameter t0 is not included in (11).

7.2. General Case. Figure 3b shows an asymmetric diagram of filtration of fresh water in a near-shore
water-bearing stratum (z∗0 = z0, z∗5 = z5, and P 5

∗ = P 5), where the polygon P 4 ∪ P 5 is a feed contour ϕ = 0 or P 4:
ψ = Q and P 5: ϕ = 0. We consider, for example, the first version. In this case, in representation (10) we have

dw

dζ
= Keiβπ

4∏
k=2

(ζ − tk)−1/2(ζ − t0)−1/2 ≡ Π0(ζ), Π(ζ) = [(ζ − t0)(ζ − t5)]−1/2.

We set t3 = −1, t4 = 0, t0 = 1, and t2 = 2 and the parameters K and t1 are uniquely determined from system (11)
(see Sec. 5).

Remark 3. In the general case of symmetric flow (see Sec. 7.1), the parameter t0 ∈ (t5, t1) remained
unknown, and in the asymmetric diagram (see Sec. 7.2) the parameter t5 ∈ (0, 1) is unknown. These parameters

can be determined, for example, from the equation l =

t5∫
t4

∣∣∣dz
dt

∣∣∣ dt, in which the length l = |z5 − z4| = y5 > 0

(z4 = 0) of the feed contour is specified. By construction, |z5 − z0| = H0 +H1 is fixed. Therefore, on the polygon
P = P 5 ∪ P 4 ∪ P 0, which connects the ends z4 = L ∩ P 4 and z1 = Γ ∩ P 0 of the free boundaries L and Γ, only the
coordinate y1 = Im z1 remains unknown.

8. Polygonal Boundaries. In Secs. 3–7, we considered primal problems in which the specified segments
of the boundary in the filtration region D consist of line segments (finite or infinite) parallel to the coordinate
axes. In some of these problems, the parameters of the required conformal mapping z: ∂D were determined very
simply owing to the monotony of the functionals defining the system of equations for these parameters. In other
problems, the solvability of the system follows immediately from results of [4], where this problem was studied for
more complex geometry of the boundary of the region D.

In further use of the continuity method to prove the solvability of general problems of gravity filtration, the
problems studied in Secs. 3–7 will serve as initial problems, from which, filtration problems with complex geometry
of the region D are obtained by polygonal deformation of specified segments of the boundaries ∂D. With this
approach, in the problems considered in Secs. 3–7, the confining beds (ψ = const) and the boundaries of water
basins (ϕ = const) can be considered polygons P k (finite or infinite) with vertices at the points zkj and the angles αkjπ
at them.

9. Unique Solvability of Contact Problems. Let us consider the general contact problems of fluid
filtration in porous channels formulated in Secs. 1 and 2 that can be obtained by polygonal deformation of confining
beds and boundaries of water basins in the primal problems studied in Secs. 3–7. We note that under such
deformation, finite polygons can become infinite ones [1, p. 165].

Investigation of contact problems of fluid filtration in regions D in which the specified part of boundaries is
polygons P ⊂ ∂D involves proving the solvability of system (6) for the parameters tk (k = 1, n) of the conformal
mappings z: E → D.

The vector p = (l, α), where l = (l1, . . . , ln+1) and α = (α0, . . . , αn+1), is called a geometrical characteristic
of the polygon P because it completely defines the geometry of P .

The characteristic p satisfies the following conditions of a prime (nondegenerate) polygon [2]: | ln lk+1| 6 δ−1

(0 < δ 6 αk 6 2 and k = 0, n+ 1) and |Pij | > δ (|i − j| > 2). Here Pij ⊂ D is an arbitrary curve connecting the
links (Pi, Pj) ⊂ P . The set of prime polygons P is denoted by G = G(δ) [P ⊂ G and p = (l, α) ∈ G].

In the proof of the solvability of (6) for tk (k = 1, n), the properties of the conformal mapping w: E → D∗

also play an important role.
For the case where just one free boundary L or Γ is present, the unique solvability of Eq. (6) was established

previously [2] for a wide class of problems (called filtration-type problems [2]) in which the derivative dw/dζ depends
only on fixed preimages t0 and tn+1 of the ends of the free boundary zk = z(tk) (k = 0, n+ 1).
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For primal filtration problems for the parameters tk (k = 1, n) with just one free boundary L or Γ formulated
in Secs. 1 and 2, the unique solvability follows immediately from the results of [4]. Therefore, we consider filtration
problems for fluids with two free boundaries L and Γ reaching horizontal drainage.

In the problems studied in Sec. 7, we deform the confining beds (ψ = const) and the boundaries of the water
basins (ϕ = const), by replacing them by an arbitrary prime (nondegenerate) polygon P ⊂ G(δ). For definiteness,
we consider the asymmetric problem from Sec. 7.2. We assume that zk, where k = 0, n+ 1 (z0 = z4 = 0 and
zn+1 = z1), are the vertices and ends of the polygon P , αkπ are the vertex angles, lk = |zk − zk−1| are the lengths

of the polygon links Pk, and P =
n+1⋃
k=1

Pk.

The parameters tk (k = 2, 4) and t0 are fixed, and t1 and K > 0 are determined from Eq. (11). We denote
the preimages of the vertices zk ∈ P by τk ∈ [t4, t1] (k = 0, n+ 1) and note that τ0 = t4, τn+1 = t1, and one of
the parameters τj = t0, j 6 n (let τn = t0) are fixed. The vector τ = (τ1, . . . , τn−1) of the unknown constants τk
(k = 1, n− 1) is obtained from the system

lk =

τk∫
τk−1

∣∣∣dz
dt

∣∣∣ dt ≡ fk(τ, α) (k = 1, n), α = (α0, . . . , αn+1),

in which one of the equations (e.g., the equation for ln) is a consequence of the remaining equations (see Remark 3).
We write the system of equations for τk (k = 1, n− 1) as a functional equation for τ = (τ1, . . . , τn−1):

l = f(τ, α), f = (f1, . . . , fn−1). (12)

In representations (5), the function M(ζ) has the form

M(ζ) =
1
πi

t4∫
t1

h(t)
Π(t)(t− ζ)

dt, h = q(t)|Π0(t)|.

We note that the limits of integration t1 and t4 and all the parameters tk (k = 0, 4) and K included in h(t)
are fixed. Therefore, for the solution τ = (τ1, . . . , τn−1) of Eq. (12) that corresponds to the prime polygon P ⊂ G(δ)
as in [2], we establish the validity of the inclusion (a priori estimates):

τ ∈ Ω = {τ | τk+1 − τk > ε(δ) > 0, k = 0, n}. (13)

Based on estimates (13), in [2], the following properties of the vector f(τ, α) are established:

f ∈ C2[Ω×G],
∣∣∣Df
Dτ

∣∣∣ > d(ε, δ) > 0. (14)

Here Df/Dτ = {fij} and fij = Dfi/Dτj (i, j ∈ 1, n− 1).
Estimates (13) and (14) ensure the applicability of the continuity method [1–3], according to which, from the

unique solvability of the primal problems in Sec. 7 it follows that Eq. (12) has a unique solution τ = (τ1, . . . , τn−1)
for an arbitrary prime polygon P ⊂ G(δ).

10. Analysis of Results. The classical problems of filtration theory considered in Secs. 3–7 have been
studied by other researches, whose papers are cited in monographs [6–9]. As a rule, these problems were studied
by the method of filtration hodograph, and the problem of parameters of conformal mappings corresponding to
these problems z: E → D was solved using a semi-inverse approach: various values of these parameters were fixed,
and from them flow filtration characteristics (head, length of a dam, dimensions of drainage regions, etc.) were
calculated.

A solution of the primal problem of conformal mapping parameters in the theory of filtration of fluids with
free boundaries was first obtained in [1] for the case of finite regions, and in [2], it was extended to infinite regions.

The main goal of the paper was to choose primal filtration problems such that by deformation of their specified
boundaries in the class of polygons using the continuity method, it would be possible to prove the solvability of
the general primal problems of filtration theory. Analysis of the parameters for some of these well-known problems
reveals new qualitative properties of their solutions.

For the problem considered in Sec. 3, Polybarinova-Kochina [6] constructed an analog of formula (8) for
the derivative of the conformal mapping z: E → D, which includes an arbitrary material parameter. In Sec. 3,
it is established that this parameter is not arbitrary and is uniquely determined such that the conformal mapping
conserves orientation and is nondegenerate on the boundary (dz/dt 6= 0 at |t| <∞).
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In Secs. 6 and 7, we first formulated and solved the primal problems of a bottom-water cone and a fresh-water
lens, which have been extensively studied previously using approximate models (see references in [6–9]).

We note some properties of the mapping z: E → D (see Secs. 6 and 7):
(a) in the preimage t1 of the point z1, the function (dz/dζ)(ζ− t1)−1/2 has a logarithmic feature, i.e., at this

point z1, the free boundary Γ is not a Lyapunov curve (cf. with the example in [10, p. 172]);
(b) at the point t2, the derivative dz/dζ is bounded, and, thus, the flow symmetry axis y = −l (see Sec.6)

or y = y5 (see Sec. 7.1) is the tangential to Γ at the point.
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